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Abstract: - This paper focuses on longitudinal adaptive tyre longitudinal friction control by regulating desired 
slip ratio *λ   in different road conditions. The longitudinal friction coefficient is modeled by the Magic Formula 
and its key parameters under different road surfaces are identified on-line using the proposed constrained 
hybrid genetic algorithm (GA). By means of this, for a specific desired tyre longitudinal friction, the 
corresponding control objective of slip ratio can be obtained via a numerical method. A nonsingular and fast 
terminal sliding mode (NFTSM) control method is then employed to track the desired slip ratio, as 
Longitudinal Slip ratio Control (LSC). Evidently, the above serial algorithms of parameter evaluation, 
optimization and control adapt to, or self-tune with, the variation of road surfaces. Simulation experiments 
support this conclusion, in which, the tyre friction was tracked precisely and rapidly and the requirement of 
adaptive road surface variation was satisfied. 
 
Key-Words: - parameters identification, tyre friction control, constrained hybrid genetic algorithm, nonsingular 
and fast terminal sliding mode control 
 
1 Introduction 

In order to cope with the complicated operation 
conditions of vehicles and to improve vehicle safety 
and comfort, various active control systems (such as 
ABS, 4WS and ESP, etc.) have been proposed. As a 
representative, integrated vehicle dynamics control 
has attracted much attention and become a hot topic 
in domain [1-9]. 

Admittedly, these researches do really improve 
the vehicle performance. However, most of them 
only place stress on the calculation of tyre friction 
or total yaw moment instead of its effective 
realization. No consideration of the tyre friction 
generation mechanism is taken. Some of them 
adopted relatively simple methods, e.g. to distribute 
yaw moment only to brake forces in one single 
axle[4-5]. Consequently, their seemingly ideal control 
strategies and results might probably be Utopia due 
to the ignorance of a thorough consideration to the 
tyre–road interaction. For instance, when a greater 
tyre force is needed, simply increasing brake force 
will make thing worse if the slip ratio of the tyre has 
been big enough. To deal with this problem, an 
approach was proposed [11]. However, more 
consideration should be paid, since the realization of 
the tyre friction remains to be an important issue 
concerning the handling performance. 

We have proposed a kind of main/servo loop 
hierarchical integrated control structure in our 
previous studies [12-14].The main loop concerns with 

the calculation of the desired stabilized forces of 
tyres that are really generated in the servo loop. 
Main loop design and tyre force contribution have 
been studied before. As an improvement and 
supplement, this paper is to present a method to 
realize tyre friction identification and control in the 
servo loop.Detailed, based on the existing 
Longitudinal Slip ratio Control, LSC (ABS/TCS), 
this research investigates an Extended Longitudinal 
Slip ratio Control based control integration between 
longitudinal slip ratio control (the bottom controller) 
and the global control (the upper controller), taking 
into account both actual tire force generation and 
time-varying characteristics of tire-road friction for 
different road surfaces. More specifically, in order 
to ultimately divide the entire vehicle stability 
control problem into the control task and actual 
control actuation, the four nonlinear tires (LSC) in 
the bottom control layer are treated as special 
actuators to generate the desired stabilizing forces 
and moment for the whole vehicle. As a result, the 
forces and moment distribution can be solved as a 
force tracking problem. But, the traditional LSC 
only controls the optimal slip Optλ  of each wheel to 
prevent it from locking such that a high friction 
coefficient Peakµ  is achieved. While, as indicated in 
Figure 1, the LSC is designed to track any Re fλ  
( Re0 f Optλ λ< ≤ ), corresponding to any desired forces 
and moment from the upper control layer. 
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Figure 1 μ-λ curve 

This paper is organized as follows: section 2 
presents the adopted tyre model. Section 3 presents 
the structure of the adaptive friction control. The 
desired longitudinal slip ratio is calculated in section 
4 and realized in section 5. At last, numerical 
simulation results are shown in section 6. 

2 Tyre Model 
The Magic Formula is applied in this paper, 

which is widely used to calculate steady-state tyre 
force and moment in vehicle dynamics studies. For 
a constant vertical load, the longitudinal friction 
coefficient is given by: 

{ }
( , , , , )

sin[ arctan ( arctan( )) ]
µ µ λ

λ λ λ
=

= − −
L L L L L

L L L L L L

B C D E
D C B E B B

     (1)          

where 
     µL   longitudinal friction coefficient 

 λ     wheel longitudinal slip 
LB    stiffness factor 
LC    shape factor 
LD    peak value 
LE    curvature factor 

In fact, the working conditions of vehicle are 
uncertain, e.g., there are variations of road surface. 
So the key parameters of the Magic Formula 

LB , LC , LD  and LE should be estimated on-line, 
which is one of the tasks for section 4. 

3 Control Structure of Adaptive Type 
longitudinal Friction Control 

The adaptive, or self-tuning tyre friction control, 
whose structure is diagrammatized in Figure 2, is a 
part of the main/servo loop control. The main loop 
is used to calculate the desired tyre friction and 
active wheel angles. And the servo loop is adopted 
to realize the optimal control inputs, i.e. tyre friction, 
which is exerted through brake and active wheel 

angle. In this paper, we only focuses on the 
longitudinal tyre friction control. 

  The control structure of the adaptive tyre 
friction control is as Figure 2. The desired tyre 
friction, which is calculated by the main loop, is the 
control objective, and the main purpose is to track 
this friction. Two steps are included in the adaptive 
tyre friction control: 

Driver
Input

Controller
Optimum 

forces 
distribution

, , , , , ...u v β ψ λ ω

,x y

z

F F
M

δ∆

,xb ijF

Steering angle 
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Tyre friction 
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Tyres/
wheels
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 model

Main-loop controller Servo-loop controller
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Adaptive tyre friction control
Step 1 Step 2

bTRefF

Figure 2 Schematic diagram of the main/serve loop structure 
and adaptive tyre friction control 

Step 1: Calculation of the desired longitudinal 
slip ratio is the purpose of this step. Using 
constrained hybrid genetic algorithm (GA), the 
parameters of Magic Formula can be estimated on-
line so that the tyre model is able to adapt to the 
variations of road surface.  This means through this 
process, the controller is endowed to the ability of 
self-tuning to road variations. Then based on tyre 
model, the desired longitudinal slip ratio, which is 
corresponding to a given desired tyre friction, can 
be calculated via a numerical method. 

Step 2: The Longitudinal Slip ratio Control 
(LSC) is employed to track the desired longitudinal 
slip ratio rapidly and precisely through exerting 
brake to the wheel. The nonsingular and fast 
terminal sliding mode (NFTSM) is applied to 
achieve good tracking ability. 

4 Calculation of Desired Longitudinal 
Slip Ratio 

Tyre friction estimation is a prerequisite for 
longitudinal friction control. For an electric vehicle 
with in-wheel motors, the brake and drive torque are 
measured by transducers mounted in motors. There 
has been an attempt to measure the brake torque of 
conventional vehicles by force transducer mounted 
on the brake caliper support[13]. In this paper, 
assume that the brake torque can be measured, and 
then the tyre friction can be estimated using the 
method discussed below.  
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A quarter-car model is shown in Figure 3. The 
dynamic equations of motion are as follows: 

 xb
dum F
dt

= −                                           (1) 

 b xb b
dJ r F T
dt
ω
= −                              (2) 

 ZF mg=                                           (3) 
where 
m   mass of the quarter-car 
u    vehicle horizontal speed 

xbF  tyre friction 
J    wheel inertia 
ω   wheel angular speed 

br    wheel radius 
bT    brake torque 
ZF   vertical force 

g     acceleration of gravity 

ZF

u

xbF

bT ω

 
Figure 3 Quarter-car model 

Then the tyre friction can be estimated by the 
following equation: 

 ˆ b
xb

b b

TJ dF
r dt r

ω
= +                                    (4) 

The longitudinal slip ratio ˆ
xbλ with respect to 

ˆ
xbF  is estimated by 

 ˆ b
xb

u r
u
ω

λ
−

=                                           (5) 

The following equation is to describe the non-
linear relationship of the tyre friction xbF  and the 
corresponding xbλ  

 ( )xb Z xb xbF F µ λ= ⋅                              (6) 
where xbµ is friction coefficient. 
In order to minimize the error of the estimated 

values and the real values of LB , LC , LD  and LE , 
this paper employs a performance index PI, i.e. the 
weighted sum of squares of the error between the 
estimated values and the real values of the tyre 

friction. Then the original parameter identification 
problem is converted to a constrained optimization 
problem and can be written as: 

 ( )
2

, ,
1

ˆˆmin ,
N

T
i xb i Z xb ix i

PI w F F xµ λ
=

 = − ∑    (7) 

[ ], , , T
L L L Lx B C D E=                                 (9) 

 min max. .  s t x x x≤ ≤                            (10) 
where iw  is the weighting factor, minx  and maxx are 
the lower and upper constrained bounds of LB , LC , 

LD  and LE ,  respectively. 
The scheme for minimizing PI is presented by 

using the constrained hybrid genetic algorithm, 
which optimizes PI using the Genetic Algorithm 
(GA) and the active-set Sequential Quadratic 
Programming (SQP) method. GA can reach the 
region near an optimum point quickly, but it takes 
many function evaluations to achieve convergence. 
This scheme is to run GA for a small number of 
generations to approach an optimum point. Then the 
solution from GA is used as an initial point for SQP 
approach for fast local search. 

A GA can be an appropriate solution with respect 
to its powerful and global search technique based on 
the operation of natural genetics and the Darwinian 
‘survival of the fittest’ theory with a randomly 
structured information exchange. Given an 
optimization problem, GA encodes the parameters 
concerned into finite bite binary strings, called a 
chromosome. And this is the first and important part 
of a GA process. A chromosome population 
subsequently forms, each represent a possible 
solution to the optimization problem. Evaluating the 
fitness of each chromosome according to the 
performance index is an important link between the 
GA and the practical system. Three basic operations, 
i.e., ‘reproduction’, ‘crossover’ and ‘mutation’, 
similar to genetic evolution, are then performed. 
‘Reproduction’ is a process by which the strings 
with higher probabilities will breed large number of 
their copies in the new generation. The ‘crossover’ 
involves exchanging corresponding portions of 
binary strings at a random selected portioning 
position of two chromosomes, which are chosen 
from the parent strings. This process can combine 
better qualities among the preferred good strings 
and extend the genetic search space. ‘Mutation’ is a 
process by which the chance for the GA to reach the 
optimal point is reinforced through just an 
occasional alteration of a value at a randomly 
selected bit position, such as flipping the state of bit 
from 1 to 0, or vice versa. In the following, each of 
the strings is decoded to be its decimal values of 
corresponding actual parameters and sent to 
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objective function. At last, the string with the 
optimal value of performance index is found and 
decoded to obtain the parameters to be optimized for 
the reference tyre model. 

Because of the features mentioned above, the GA 
is introduced to search the optimal values of LB , LC , 

LD  and LE . And they are encoded into a binary 
string of fixed length as following. 
   

31 2 4

, , ,
SS S S

L L L L

string

B C D E


 

Without losing generality and assuming that there 
are N1,N2, N3 and N4 bits for each value of LB , LC , 

LD  and LE respectively, so the whole length of the 
string, i.e., the chromosome in GA optimized 
solution process, have N1+N2+N3+N4 bits. It leads 
to that, if 

1
1

10 0100100
N bits

S = 



 

2
2

00 010101
N bits

S = 



 

      
4

4

10 000101
N bits

S = 



 

and then the corresponding decimal values for LB , 
LC , LD  and LE are given as 

( ),min ,max ,min12 1
LB i

L L L LN

d
B B B B= + −

−
 

( ),min ,max ,min22 1
LC i

L L L LN

d
C C C C= + −

−
 

      

( ),min ,max ,min42 1
LE i

L L L LN

d
E E E E= + −

−
 

where, 
xB id ,

xC id ,…, 
xE id respectively represent the 

binary value for LB , LC , LD  and LE . 
Besides encoding the parameters and derivation 

of performance index, several important genetic 
parameters in the GA-based searching procedure, 
e.g. the generation number, population size, the 
crossover rate and the mutation rate, must be chosen. 
In the present study, the selection for these 
parameters based on previous experience is 
described in section 6. 

Here the active set SQP approach is chosen as the 
hybrid function of GA, which is appropriate for 
small or large inequality constrained problems.  

Firstly, the lower and upper bound constraints of 
equation (10) can be transformed into conventional 
inequality constraints as following 

c cA x b≥                                                                 (11) 

[ ] [ ]min max, , ,T T
c cA I I b x x= − = −                               (12) 

where I is the 4 4×  identity matrix. 

Then the Lagrangian for the constrained problem 
(8) is defined as 

( ) ( ) ( ), i i i
i

L x PI x x b
ψ

ϕ ϕ α
∈

= − −∑                            (13) 

where i ψ∈ are the inequality constraints. And in 
this section, the active set at any feasible x  is 

( ) { }|a c cA x i A x bψ= ∈ ≥                                     (14) 
For the inequality-constraints, the optimization 

problem (8) cannot be solved using Lagrangian 
methods directly. The active set SQP methods is 
extend the inequality-constrained problem to the 
equality-constrained problem [13-14]. Specifically, the 
approach selects a subset of constraints at each 
iteration ( )kx  to be the so-called working set ( )kI , and 
solves only equality-constrained subproblems, 
where the constraints in the working sets are 
imposed as equalities and all other constraints are 
ignored. The working set is updated at every 
iteration by rules based on Lagrange multiplier 
estimates. Suppose that at the iterate ( ) ( )( ),k kx ϕ  , we 
define the quadratic programming: 

( ) 1min  
2

T T
k kq p PI p p W p= ∇ +                             (15a) 

( ). .    0T
k c k cs t A p A x b+ − ≥                                   (15b) 

At working set ( )kI , we should solve the equality-
constraints optimization problem as following: 

( )( ) ( )

1min  
2

. .    0,

T T
k k

k ki i i
c c

PI p p W p

s t a p A x b i I

∇ +

+ − = ∈
                        (16) 

Define 
( )kp pδ = −                         

We have 
( )( ) ( )( )1

2
k kT T

k kq p PI W q pδ δ δ δ+ = ∇ + +              (17) 

where ( )( )kq p  is independent of q .  

Since we can drop ( )( )kq p  from the objective 
without changing the solution of the problem, we 
can write the QP subproblem to be solved at the kth  
iteration as follows: 

1min  
2

T T
k kPI Wδ δ δ∇ +                                         (18a) 

( ). .    0, kis t a i Iδ = ∈                                             (18b) 
Supposing for the moment that the optimal kδ  

from (18a) is nonzero, we need to decide how far to 
move along this direction. If k kp δ+  is feasible with 
respect to all the constraints, we set 1k k kp p δ+ = +  . 
Otherwise, we set 

1k k k kp p α δ+ = +                                                    (19) 
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To maximize the decrease in q , we want kα  to be 
as large as possible in [0, 1] subject to retaining 
feasibility, so we obtain the following definition 

( )

, ,

, 0 ,

min 1, min
k i

Tdef
c i c i k

k Ti I a c i k

b a p
aδ

α
δ∉ <

 −
=   

 
                           (20) 

Any SQP method relies on a choice of kW  (an 
approximation of the Hessian of the Lagrangian) in 
the quadratic model. One way to approximate the 
Lagrangian Hessian would be to use a quasi-Newton 
approximation, such as the BFGS update formula 
with Hessian approximation kB  rather than kW , we 
set 

( ) ( )
1

1 1, ,
k k k

k x k k x k k

s x x
y L x x L x x

+

+ +

= −

= ∇ −∇
                         (21) 

1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s s y+ = − +                                  (22) 

 

Start

GA( ), ,
ˆ ˆ,xb j xb jFλ

SQP

RefF Ref Ref ( , ) 0ZF F xµ λ ∗− ⋅ =

Refλ

Numerical method

Hybrid 
Genetic

 Algorithm

1, ,j N= 

 
Figure 4 Flow chart for calculating desired wheel slip ratio 

However, if 2
xx L∇  is positive definite at the 

sequence of points kx , the method will converge 
rapidly; If 2

xx L∇  is not positive definite, then using 
the BFGS update may not work well. 

To ensure that the update is always well-defined 
the damped BFGS updating for SQP was devised. 
Using this scheme, we define 

( )1k k k k k kr y B sθ θ= − −                                           (23) 

where the scalar θk is defined as 
1,                            0.2

0.8
,     0.2

T T
k k k k k

T
k T Tk k k

k k k k kT T
k k k k k

if s y s B s

s B s
if s y s B s

s B s s y
θ

 ≥
= 

< −

           (24) 

Update kB as follows 

1

T T
k k k k k k

k k T T
k k k k k

B s s B r r
B B

s B s s r+ = − +                                   (25) 

It guarantees that 1kB +  is positive definite. 

The desired longitudinal slip ratio Refλ , which is 
corresponding to the desired tyre friction RefF  
(which is also the reference tyre friction) obtained 
from the main loop, can be calculated by using the 
numerical method of nonlinear equations as follows: 

 
Ref

*
Ref Ref( ) 0ZF F µ λ− ⋅ =                            (26) 

The flow chart of the calculation of desired 
longitudinal slip ratio is shown in Figure 4. 

5 LSC Based on NFTSM 
A non-singular fast terminal sliding mode 

(NFTSM) method, which has great tolerance to 
parameter uncertainties and external disturbances, is 
proposed for LSC[16]. It has such advantages that if 
the system state is far away from the equilibrium, 
the system runs on linear sliding mode; and if the 
system state is near equilibrium, the system runs on 
nonsingular terminal sliding mode. Consequently, 
compared with linear- hyper-plane-based sliding 
mode control, NFTSM offers superior properties, 
such as fast response and convergence in finite time. 
It speeds up the convergence rate when the system 
is far away from the equilibrium point in 
comparison with non-singular terminal sliding mode 
(NTSM). Furthermore, it can avoid the singularity 
in FTSM control systems. The design process is 
discussed in the following paragraphs. 

Firstly, we define a time-varying sliding mode 
surface as following: 

 
p
qs e e eα β= + +                                         (27) 

where e R∈ ; α, β are constant and 0α > ; p , q  
are the given positive odd integers and 2p q p< < . 
The error is defined as: 

 Refe λ λ= −                                         (28) 
From equations(5), (6) and (28), the following 

equation can be obtained: 

 
( )

2

Ref

1b xb

b b

r F u T rJe
u uJ

λ
λ

−
+ −

= + −




               (29)  

Then, the FTSM control law can be obtained as 
follows: 

( )
2

1

Ref

1b xbp
q

b
b

r F uu J e p JT e e
r q u

λβ λ
α α

−

 −
+ − ⋅ ⋅

= − − ⋅ ⋅ − + 
⋅ 

  









                                                                               (30) 
The sliding mode control process involves two 

phases: the reaching phase and the sliding phase. 
And the discontinuous control is usually employed 
in order to deliver a finite time reachability of the 
switching manifolds. But it is one of the major 
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contributors to the “chattering” behaviors well 
known existed in sliding mode control. Furthermore, 
the control law (30) has a singularity problem 
because of 1 0p

q − < . Consequently, to avoid this 

phenomenon, a new “terminal attractor” is proposed 
to develop a chattering free NFTSM control without 
the singularity problem. It is shown as follows: 

 
1

( )
pm
qns s s eφ γ
−

= − −                            (31) 
where Rφ +∈ ; Rγ +∈ ; m and n  are the given 

positive odd integers and 0 1m n< < .From 
equations (27), (28),(29) and (31), the NFTSM 
control law can be obtained as follows:  

 

( )

1 1

2

Ref

( )

1
       

p p m
q q n

b
b

b xb

u J qT e e e e s s
r p

r F u
J

u

α φ γ
β

λ
λ

− −  ⋅ = − ⋅ − ⋅ ⋅ + − − 
⋅    

−
+ − − + 




 





 (32) 

From equation(32), the system is able to converge 
to equilibrium by following the sliding surface, 
without the singularity problem because 
of 0 1 p

q< − . 

From equation 0s = , it can be obtained that: 

 
1p p

q qe e eα β
− −

+ = −                            (33) 

Let
1 p

qz e
−

= , the following equation can be 
obtained: 

 d q p q pz z
dt q q

α β− −
+ = −               (34) 

when 0e = , 0z = , sit t= . Solving the differential 
equation (18), tsi can be obtained as follows: 

 
( )

(0)ln

q p
q

si
q xt

q p
α β

α β

−

+
= −

−
                  (35)  

It can be derived that sit is a finite value, i.e. the 
system states will reach the system equilibrium in 
finite time. That is to see if the control law in 
equation (32) is chosen, the system states will reach 
the sliding equilibrium according to the terminal 
attractor in equation (31) in finite time sit . 

6 Simulation Results and Analysis 
In this section, simulations are carried out to 

verify the effectiveness of the proposed controllers. 
The identification performance is verified in the first 
place and then the tracking ability of LSC is tested 
and the superiority of the NFTSM is compared with 

NTSM. At last, the whole performance of the 
adaptive friction control is shown under μ-jump 
road surface. 

Table 1. Parameters used in simulations 

Table 2 Parameters of different road surface 

Road BL CL DL EL 
Snow 17.430 1.4500 0.20 0.6500 
Cobblestone, wet 14.027 1.4500 0.40 0.6000 
Asphalt, wet 15.635 1.6000 0.80 0.4500 
Cobblestone, dry 10.695 1.4000 0.85 0.6450 
Concrete, dry 13.427 1.6402 0.97 0.5372 
Asphalt, dry 13.427 1.5500 1.10 0.5327 
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Figure 5. μ-λ curve of different road surface 

The parameters used in the simulations are 
presented in Table 1.The empirical parameters of 
the Magic Formula for some common road surfaces 

Notation Value Unit 
m  mass of quarter-car 382.5 kg  
u  vehicle velocity 120 km h  
g  acceleration of gravity 9.8 2m s  

J  wheel inertia 12 2⋅kg m  

br  wheel radius 0.25 m  

dataN number of sampling points 10 - 

,minLB lower bond of stiffness factor 8 - 

,minLC lower bond of shape factor 1 - 

,minLD lower bond of peak value 0.1 - 

,minLE lower bond of curvature 

factor 
0.1 - 

,maxLB upper bond of stiffness factor 18 - 

,maxLC upper bond of shape factor 1.7 - 

,maxLD upper bond of peak value 1.5 - 

,maxLE upper bond of curvature 
factor 

0.9 - 

:GA  initial population size 
30 - 

:GA max number of generation 
100 - 

:GA crossover rate 
0.2 - 

:GA mutation rate 
0.8 - 
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are presented in Table 2. According to these 
information, we can obtain the constrained range 
of LB , LC , LD  and LE , respectively. Theμ-λ curve 
of different road surface are shown in Figure 5. 

a. Verification of parameters identification 

In order to examine the effectiveness of the 
proposed identification scheme, simulations are 
carried out in many different cases, e.g. in the 
different range of sampling points ˆ

xbF and ˆ
xbλ . The 

identification results are shown in Figures 6-14. 
Here the true value of µ is plotted using the true 
value of LB , LC , LD  and LE  , the identified value of 
µ  is plotted using the identified value of LB , LC , LD  
and LE .  

Given ( ),
ˆ 1, 2, ,xb j dataj Nλ =   evenly distributed in 

the range [ ]0,0.01 , as shown in Figure 6, the 
identified value of µ is satisfactory in the 
range [ ]0,0.08λ ∈ . The error of true and identified 
value of µ is less than 0.02, and the percentage error 
is no more than 2%, as shown in Figure 7 and 
Figure 10 respectively. 
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Figure 6. True and identified value of µ  ( [ ]0,0.01λ ∈ ) 
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Figure 7. Error of true and identified value of µ  

( [ ]0,0.01λ ∈ ) 
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Figure 8. Percentage error of µ  ( [ ]0,0.01λ ∈ ) 
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Figure 9. True and identified value of µ  

( [ ]0.125,0.135λ ∈ ) 
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Figure 10. Error of true and identified value of µ  

( [ ]0.125,0.135λ ∈ ) 

As can be seen in Figure 9, when we change the 
range of sampling points ( ),

ˆ 1, 2, ,xb j dataj Nλ =  from 
[ ]0,0.01  to [ ]0.125,0.135 , the identification result is 
significantly improved for these points containing 
more useful information of the non-linear 
characteristics of tire-road friction. As shown in 
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Figure 10 and Figure 11, in the range [ ]0.06,0.25λ ∈ , 
the error of true and identified value of µ is less 
than 0.02, and the percentage error is no more than 
2%. Furthermore, in the range [ ]0,0.4λ ∈ , the 
maximum error is approximately equal to 
0.03(Figure 10). The percentage error is largely less 
than 5%, indicated in Figure 10. 
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Figure 11. Percentage error of µ  ( [ ]0.125,0.135λ ∈ ) 
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Figure 12. True and identified value of µ  ( [ ]0,0.132λ ∈ ) 
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Figure 13. Error of true and identified value of µ  

( [ ]0,0.132λ ∈ ) 

For further useful information, we expand the 
range of ( ),

ˆ 1, 2, ,xb j dataj Nλ =   to [ ]0,0.132 , Figure 12 
shows the satisfactory performances more clearly. 
In the range [ ]0,0.15λ ∈  ( 0.13

Opt
λ = ), the maximum 

error of true and identified value of  µ  is 
approximately equal to 42 10−×  (Figure 13). And the 
percentage error is no more than 0.03%, Figure 14. 
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Figure 14. Percentage error of µ  ( [ ]0,0.132λ ∈ ) 

As mentioned above, the more useful information 
of the sampling points ˆ

xbλ and the more accurate 
identification results of the LB , LC , LD  and LE . It 
shows the more remarkable effect of the proposed 
method. However, in this paper, the values 
of LB , LC , LD  and LE  are identified on-line, the 
chosen points can only be located in the 
neighborhood of a given λ . Based on the above 
analysis, the identification results are satisfactory in 
these ranges, as shown in Figure 6-14. 

b. Verification of LSC tracking ability  
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Figure 15 LSC tracking ability 

To testify the effectiveness of the NFTSM, the 
reference value of Ref 0.19λ =  is given to the LSC 
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controller to track. From Figure 15, it can be 
concluded that the NFTSM is in shorter response 
time than NTSM. Besides, the system is continuous, 
without appearance of a singular phenomenon. 

c. Simulation results under μ-jump road 
surface 

In the simulation of μ-jump road surface, the 
desired tyre friction Re fF input is 2624N after 0.5s. 
At 1.5s, the vehicle drives from asphalt, wet road to 
asphalt, dry road. Simulation results are shown in 
Figure 16-19. 

As is depicted in Figure 16-17 and Figure 19, 
with respect to tire friction, since NFTSM can use 
both the linear term e eα+  and the nonlinear 
fractional term p qeβ  to obtain a corrective control 
force, the values of NFTSM tracks the reference 
value in faster response than that of NTSM after 
0.5s and 1.5s. Consequently, the response of vehicle 
acceleration of NFTSM is also more sensitive than 
that of NTSM, as is shown in Figure 18.  This 
proves the proposed control strategy to be effective 
in tracking desired tyre friction and in adaptation to 
the variation in road surface. 
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Figure 16 Tracking performance of tyre friction 
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Figure 17 Tracking error of tyre friction 
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Figure 18 Vehicle acceleration 
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Figure 19 Tracking performance of slip ratio 

In Figure 17, the tracking error of longitudinal 
tyre friction, while not as “perfect”, is still very 
good and a smooth control law is now achieved. 

7 Conclusion 
Our main/servo loop control strategy is a 

representative of the vehicle integrated control, an 
active domain of research. This paper specifically 
focuses on a component of the servo loop to realize 
adaptive tyre friction control adaptive to the 
variation of road condition. A two-step solution is 
proposed: on-line identifying Magic Formula 
parameters using a hybrid GA method and 
correspondingly acquiring LSC objective using a 
numerical method, and dynamically implementing 
LSC using a nonsingular and fast terminal sliding 
mode (NFTSM) control method. In spite of a higher 
computation load compared with other control 
methods, a drastic optimization of the algorithms 
allows the controller provides a fast adaptation to 
the change in road surface condition and the 
simulation results shows that the tyre friction was 
tracked precisely and rapidly. 

Ongoing researches endeavors on studying 
vehicle integrated control in a comprehensive way, 
consisting of, integrating the proposed adaptive 
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friction controller and the main loop controller and 
introducing robust control into the main loop to 
tackle parameter uncertainties. 
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